Interrogation surveillée 2, Sujet 1.

Les exercices sont indépendants. Ils peuvent être traités dans l'ordre de votre choix. Le soin apporté à votre copie (lisibilité, présentation) et la clarté des raisonnements et de l'expression écrite prennent une part importante dans l'évaluation de la copie.

Exercice 1. Soit E un ensemble. Soient A, B, C trois parties de E. Montrer l'assertion suivante :

$$A \cup B = A \cup C$$
 et $A \cap B = A \cap C \implies B = C$.

Exercice 2. Soient E, F, G trois ensembles. Soient $u: E \to F$, et $v: F \to G$ deux applications. Montrer que si $v \circ u$ est surjective, alors v est aussi surjective.

Exercice 3. On définit sur \mathbb{N} une relation \mathcal{R} en posant, pour tous $a, b \in \mathbb{N}$:

$$a\mathcal{R}b \iff \exists n \in \mathbb{N}, \ b = a^n.$$

Montrer que \mathcal{R} est une relation d'ordre.

INSA de Rouen - Département STPI - Section SIB - M2 - Groupe K

Interrogation surveillée 2, Sujet 2.

Les exercices sont indépendants. Ils peuvent être traités dans l'ordre de votre choix. Le soin apporté à votre copie (lisibilité, présentation) et la clarté des raisonnements et de l'expression écrite prennent une part importante dans l'évaluation de la copie.

Exercice 1. Soient E, F, G trois ensembles. Soient $u: E \to F$, et $v: F \to G$ deux applications. Montrer que si $v \circ u$ est injective et u surjective, alors v est injective.

Exercice 2. On définit sur \mathbb{N} une relation \mathcal{R} en posant, pour tous $a, b \in \mathbb{N}$:

$$a\mathcal{R}b \iff \exists n \in \mathbb{N}, \ b = a^n.$$

Montrer que \mathcal{R} est une relation d'ordre.

Exercice 3. Soit E un ensemble. Soient A, B, C trois parties de E. Montrer l'assertion suivante :

$$A \cup B = A \cap C \iff B \subset A \text{ et } A \subset C.$$