Soit $f \in \mathcal{L}(\mathbb{R}^2)$ tel que la matrice de f dans la base canonique $\mathcal{B}_e = (e_1, e_2)$ de \mathbb{R}^2 est

$$A = \left(\begin{array}{cc} 1 & 2 \\ 2 & 1 \end{array}\right).$$

- 1. Soient f_1 , et f_2 les vecteurs de coordonnées (1,-1) et (1,1) dans la base canonique. Justifier brièvement que $\mathcal{B}_f = (f_1,f_2)$ est une base de \mathbb{R}^2 .
- 2. Donner les coordonnées dans cette base du vecteur u de coordonnées (2,3) dans la base canonique.
- 3. Donner la matrice de f dans cette base.

Soit E un \mathbb{K} -espace vectoriel ($\mathbb{K} = \mathbb{R}$ ou \mathbb{C}) de dimension finie 2n ($n \geq 1$). Soit $f \in \mathcal{L}(E)$ tel que $f^2 = 0$, et tel qu'il existe une famille de n vecteurs de E, 1. Montrer que $\operatorname{Im}(f) = \operatorname{Ker}(f)$.

- 2. Montrer que Ker(f) et $Vect\{a_1, \ldots, a_n\}$ sont supplémentaires dans E.

Soit $f:(x,y,z)\in\mathbb{R}^3\mapsto(z,x-y,y+z)$. Montrer que f est un automorphisme de \mathbb{R}^3 .

M.P.S.I., Colles, Semaine 26, Sujet 2.

Soit E un \mathbb{K} -espace vectoriel ($\mathbb{K} = \mathbb{R}$ ou \mathbb{C}) de dimension finie. Soient $f, g \in \mathcal{L}(E)$. Les deux questions sont indépendantes. 1. On suppose que f+g est bijectif et $g \circ f = 0$. Montrer que $\operatorname{rg}(f) + \operatorname{rg}(g) = \dim(E)$. 2. On suppose que $f+g = id_E$, et $\operatorname{rg}(f) + \operatorname{rg}(g) = \dim(E)$. Montrer que f et g sont des projecteurs associés.

On considère les fonctions définies sur $\mathbb R$ par

$$f_1(x) = e^x$$
 $f_2(x) = e^{-x}$ $f_3(x) = \cosh(x)$ $f_4(x) = \sinh(x)$.

- 1. Montrer que $\mathcal{B}=(f_1,f_2)$ et $\mathcal{B}'=(f_3,f_4)$ forment deux bases du même sous espace vectoriel F de $\mathcal{F}(\mathbb{R},\mathbb{R})$. 2. Donner la matrice de passage de \mathcal{B} à \mathcal{B}' et celle de \mathcal{B}' à \mathcal{B} .

Soit $f \in \mathcal{L}(\mathbb{R}^3)$ telle que $f^2 = 0$. Montrer qu'il existe $a \in \mathbb{R}^3$ et φ une forme linéaire de \mathbb{R}^3 telle que pour tout $x \in \mathbb{R}^3$, $f(x) = \varphi(x)a$.

M.P.S.I., Colles, Semaine 26, Sujet 3.

Soient $\mathcal{B}_e = (e_1, e_2, e_3)$ une base de \mathbb{R}^3 et $\mathcal{B}_f = (f_1, f_2)$ une base de \mathbb{R}^2 . Soit $f \in \mathcal{L}(\mathbb{R}^3, \mathbb{R}^2)$ tel que la matrice de f dans les bases \mathcal{B}_e et \mathcal{B}_f est

$$M = \left(\begin{array}{ccc} 2 & -1 & 1 \\ 3 & 2 & -3 \end{array}\right).$$

- 1. Que vaut $f(e_1 + 2e_2)$?
- 2. Soient $e'_1 = e_2 + e_3$, $e'_2 = e_3 + e_1$ et $e'_3 = e_1 + e_2$. Justifier que $\mathcal{B}'_e = (e'_1, e'_2, e'_3)$ est une base de \mathbb{R}^3 . Soient $f'_1 = (f_1 + f_2)/2$ et $f'_2 = (f_1 f_2)/2$. Justifier de même que $\mathcal{B}'_f = (f'_1, f'_2)$ est une base de \mathbb{R}^2 .
- 3. Donner la matrice M' de f dans ces nouvelles bases.

So Define I an interior M due f datasets notwere states. EX 2. Soit E un \mathbb{K} -espace vectoriel ($\mathbb{K} = \mathbb{R}$ ou \mathbb{C}) de dimension finie. Soit $f \in \mathcal{L}(E)$ tel que $\operatorname{rg} f^2 = \operatorname{rg}(f)$. 1. Montrer que $\operatorname{Im}(f) = \operatorname{Im}(f^2)$ et $\operatorname{Ker}(f) = \operatorname{Ker}(f^2)$. 2. Montrer que $\operatorname{Im}(f)$ et $\operatorname{Ker}(f)$ sont supplémentaires dans E.

Soit E un espace vectoriel de dimension n. Soit φ une forme linéaire non nulle de E. Soit $u \in E \setminus \operatorname{Ker} \varphi$ Montrer que $\operatorname{Vect}(u)$ et $\operatorname{Ker} \varphi$ sont supplémentaires dans E.