(Question de cours) Soit f une fonction réelle de limite l en un point $a\in\mathbb{R}$. Soit $(x_n)_{n\in\mathbb{R}}$ une suite de points du domaine de définition de f (noté \mathcal{D}_f) telle que $\lim_{n\to\infty} x_n = a$. Montrer que $(f(x_n))_{n\in\mathbb{N}}$ tend vers f(a).

1. Calculer la limite en 0 des fonctions f_0 , f_1 et f_2 définies sur \mathbb{R}^*_+ par les expressions suivantes :

$$f_0(x) = E\left(\frac{1}{x}\right), f_1(x) = xE\left(\frac{1}{x}\right), f_2(x) = x^2E\left(\frac{1}{x}\right).$$

2. Calculer la limite en 0 de $g(x) = (\cos(x))^{1/x^2}$

Soit $f:\mathbb{R} \to \mathbb{R}$ une fonction continue en 0 telle que pour tout $x \in \mathbb{R}$ f(2x) = f(x). Montrer que f est constante.

(Question de cours) Soient f,g deux fonctions réelles définies sur une partie $\mathcal{D}\subset\mathbb{R}$. On suppose g bornée au voisinage de a et $\lim_{x\to a}f(x)=0$. Montrer que $\lim_{x\to a} fg(x) = 0$.

Soit f une fonction périodique qui admet une limite finie l en $+\infty$. Montrer que f est constante. En déduire que la fonction sin n'a pas de limite en $+\infty$.

- 1. Etudier les points de continuité, les limites à droites et à gauche en les points de discontinuité de la fonction suivante définie sur $\mathbb{R}_+^*: f(x) = x^2 E\left(rac{1}{x}
 ight)$
- 2. Calculer la limite en 0 de $g(x) = x(3+x) \frac{\sqrt{x+3}}{\sqrt{x}\sin(\sqrt{x})}$

M.P.S.I., Colles, Semaine 21, Sujet 3.

EX 1.

(Question de cours) Soit f une fonction réelle définie au voisinage d'un point $a \in \mathbb{R}$. On suppose $\lim_{x \to a} f(x) = \infty$. Montrer que f ne s'annule pas au voisinage de a et que $\lim_{x\to a} 1/f(x) = 0$.

Soit $f:\mathbb{R}_+ o\mathbb{R}$ une fonction croissante telle que la suite $(f(n))_{n\in\mathbb{N}}$ diverge vers ∞ . Montrer qu'alors $\lim_{x\to\infty}f(x)=\infty$.

- 1. Etudier la continuité en 1 de la fonction $g(x) = \frac{E(\sqrt{x^3+3})}{x^2-2x+5}$
- 2. Calculer la limite en 0 de $h(x) = \frac{(1 \cos(x))\arctan(x)}{x}$

M.P.S.I., Colles, Semaine 21, Sujet 1.

(Question de cours) Soit f une fonction réelle de limite l en un point $a \in \mathbb{R}$. Soit $(x_n)_{n \in \mathbb{R}}$ une suite de points du domaine de définition de f (noté \mathcal{D}_f) telle que $\lim_{n\to\infty} x_n = a$. Montrer que $(f(x_n))_{n\in\mathbb{N}}$ tend vers f(a).

1. Calculer la limite en 0 des fonctions f_0 , f_1 et f_2 définies sur \mathbb{R}_+^* par les expressions suivantes :

$$f_0(x) = E\left(\frac{1}{x}\right), f_1(x) = xE\left(\frac{1}{x}\right), f_2(x) = x^2E\left(\frac{1}{x}\right).$$

2. Calculer la limite en 0 de $g(x) = (\cos(x))^{1/x^2}$

Soit $f: \mathbb{R} \to \mathbb{R}$ une fonction continue en 0 telle que pour tout $x \in \mathbb{R}$ f(2x) = f(x). Montrer que f est constante.

M.P.S.I., Colles, Semaine 21, Sujet 2.

(Question de cours) Soient f,g deux fonctions réelles définies sur une partie $\mathcal{D}\subset\mathbb{R}$. On suppose g bornée au voisinage de a et $\lim_{x\to a}f(x)=0$. Montrer $\underline{\text{que }} \lim_{x \to a} fg(x) = 0.$

Soit f une fonction périodique qui admet une limite finie l en $+\infty$. Montrer que f est constante. En déduire que la fonction sin n'a pas de limite en $+\infty$.

- 1. Etudier les points de continuité, les limites à droites et à gauche en les points de discontinuité de la fonction suivante définie sur $\mathbb{R}_+^*: f(x) = x^2 E\left(\frac{1}{x}\right)$
- 2. Calculer la limite en 0 de $g(x)=x(3+x)\frac{\sqrt{x+3}}{\sqrt{x}\sin(\sqrt{x})}$

M.P.S.I., Colles, Semaine 21, Sujet 3.

(Question de cours) Soit f une fonction réelle définie au voisinage d'un point $a \in \mathbb{R}$. On suppose $\lim_{x \to a} f(x) = \infty$. Montrer que f ne s'annule pas au voisinage de a et que $\lim_{x\to a} 1/f(x) = 0$.

EX 2. Soit $f: \mathbb{R}_+ \to \mathbb{R}$ une fonction croissante telle que la suite $(f(n))_{n \in \mathbb{N}}$ diverge vers ∞ . Montrer qu'alors $\lim_{x \to \infty} f(x) = \infty$.

- 1. Etudier la continuité en 1 de la fonction $g(x) = \frac{E(\sqrt{x^3+3})}{x^2-2x+5}$
- 2. Calculer la limite en 0 de $h(x) = \frac{x^2 2x}{(1 \cos(x))\arctan(x)}$