NONASYMPTOTIC STATISTIC - FINAL EXAM December 14, 2015. 9 am - 12 am.

Calculators and documents are not allowed. This examination paper has **two** pages.

Part 1. Parametric statistics (S. Pergamenchtchikov)

1. Simple nonrandom regression (4 points)

- 1. Give the definition for the simple nonrandom regression model with unknown parameter λ .
- 2. Show that the least square estimator $\widehat{\lambda}_n$ is optimal in the mean square accuracy sense in the class of all unbiased linear estimators, i.e. for any $n \ge 1$

$$\mathbf{E}\,(\widehat{\lambda}_n-\lambda)^2 \leq \mathbf{E}\,(\widetilde{\lambda}_n-\lambda)^2\,,$$

where λ_n is a linear estimator constructed on the *n* observations.

2. Sequential estimation (4 points)

Let us $(y_j)_{j\geq 1}$ be the first order autoregressive process defined as

$$y_i = \lambda y_{i-1} + \xi_i$$
, $y_0 = 0$.

Here λ is an unknown constant parameter, $(\xi_j)_{j\geq 1}$ is i.i.d. sequence of random variables with $\mathbf{E} \, \xi_j = 0$ and $\mathbf{E} \, \xi_j^2 = 1$. We set $\mathcal{F}_0 = \{\emptyset, \Omega\}$ and $\mathcal{F}_j = \sigma\{y_1, \dots, y_j\}$ for any $j \geq 1$. Let for some H > 0

$$\tau_H = \inf\{n \ge 1 : \sum_{j=1}^n y_{j-1}^2 \ge H\}$$

- 1. Show that $\mathbf{P}(\tau_H < \infty) = 1$ for any H > 0.
- 2. Give the definition for the stopping times. Show that for any H > 0 the moment τ_H is the stopping time with respect to $(\mathcal{F}_j)_{j\geq 0}$.
- 3. Write the sequential estimator for the parameter λ .

3. Tests (2 points)

Let us $(X_j)_{j>1}$ be an i.i.d. sequence of random variables having a density.

- 1. Write the test problem in the sequential setting.
- 2. Write the Wald test.

Part 2. Nonparametric statistics (G. Chagny)

In the sequel, we denote by X_1, \ldots, X_n a sample of independent and identically distributed real random variables with unknown density f with respect to the Lebesgue measure on \mathbb{R} and unknown cumulative distribution function F.

Course notion (1 point).

We observe $(X_i)_{i=1,\dots,n}$ a sample of independent and identically distributed variables with unknown density $f \in L^2(I)$ $(I \subset \mathbb{R}$ an interval). Give the definition of the estimator for f built with the projection method on a subset $S_D \subset L^2(I)$ spanned by an orthonormal basis $\{\varphi_1, \ldots, \varphi_D\}$, (with $\varphi_j : I \to \mathbb{R}$).

Exercise. Bivariate density estimation, with kernel methods (9 points).

We observe n couples of real random variables $(X_1, Y_1), \ldots, (X_n, Y_n)$ independent and identically distributed with unknown density $f : \mathbb{R}^2 \to \mathbb{R}$ with respect to the Lebesgue measure on \mathbb{R}^2 .

For any $h = (h_1, h_2) \in (\mathbb{R}^*_+)^2$, we consider the estimator \hat{f}_h of f defined, for any $(x, y) \in \mathbb{R}^2$, by

$$\hat{f}_h(x,y) = \frac{1}{nh_1h_2} \sum_{i=1}^n Q\left(\frac{x-X_i}{h_1}, \frac{y-Y_i}{h_2}\right),$$

where $Q : \mathbb{R}^2 \to \mathbb{R}$ is a kernel function on \mathbb{R}^2 : it is an integrable function which satisfies $\iint_{\mathbb{R}^2} Q(u, v) du dv = 1$. We assume that

$$\|Q\|_{2}^{2} := \iint_{\mathbb{R}^{2}} Q^{2}(u,v) du dv < \infty, \quad \iint_{\mathbb{R}^{2}} |Q(u,v)| |v| du dv < \infty, \quad \iint_{\mathbb{R}^{2}} Q(u,v) |u|^{1/2} du dv < \infty.$$

We consider the pointwise quadratic risk on $(x_0, y_0) \in \mathbb{R}^2$ for \hat{f}_h ,

$$R_{(x_0,y_0)}(\hat{f}_h,f) = \mathbb{E}\left[\left(\hat{f}_h(x_0,y_0) - f(x_0,y_0)\right)^2\right].$$

For any $(u, v) \in \mathbb{R}^2$, we introduce the notations

$$Q_h(u,v) = \frac{1}{h_1 h_2} Q\left(\frac{u}{h_1}, \frac{v}{h_2}\right).$$

For any two-variables functions f_1 and f_2 , we denote by \star the convolution product between f_1 and f_2 , as soon as it exits,

$$(f_1 \star f_2)(x, y) = \iint_{\mathbb{R}^2} f_1(x - u, y - v) f'_2(u, v) du dv, \ (x, y) \in \mathbb{R}^2.$$

1. Justify that, if $K : \mathbb{R} \to \mathbb{R}$ is a kernel on \mathbb{R} , then the function defined by Q(u, v) = K(u)K(v), $(u, v) \in \mathbb{R}^2$ is a kernel on \mathbb{R}^2 .

2. Prove that
$$R_{(x_0,y_0)}(\hat{f}_h,f) = \left(\mathbb{E}\left[\hat{f}_h(x_0,y_0)\right] - f(x_0,y_0)\right)^2 + \operatorname{Var}(\hat{f}_h(x_0,y_0))$$

- 3. (a) Prove that $\mathbb{E}\left[\hat{f}_h(x_0, y_0)\right] = Q_h \star f(x_0, y_0).$
 - (b) Assume that f is bounded by M > 0 on \mathbb{R}^2 . Compute the variance of the estimator, and prove the following upper-bound:

$$\operatorname{Var}(\hat{f}_h(x_0, y_0)) \le \frac{M \|Q\|_2^2}{nh_1h_2}.$$

4. We also assume that f satisfies the following property.

$$\forall ((u,v),(u',v')) \in (\mathbb{R}^2)^2, \ |f(u,v) - f(u',v')| \le |u - u'|^{1/2} + |v - v'|.$$

Then, prove that

$$\left(\mathbb{E}\left[\hat{f}_h(x_0, y_0)\right] - f(x_0, y_0)\right)^2 \le C(h_1 + h_2^2)$$

where C is a constant that only depends on Q.

- 5. (a) Let g be the function defined by $g(u, v) = u + v^2 + 1/(nuv)$, $(u, v) \in (\mathbb{R}^*_+)^2$. Justify that g admits on $(\mathbb{R}^*_+)^2$ a global minimum, and compute its value.
 - (b) Deduce from the previous questions that the convergence rate of \hat{f}_h , is $n^{-1/5}$ for the pointwise quadratic risk.
- **6**. We denote by f_X the marginal density of X_1 .
 - (a) How can be computed f_X from f.
 - (b) Propose an estimator \hat{f}_X of f_X as a function of \hat{f}_h defined above.
 - (c) Assume that Q can be written Q(u, v) = K(u)K(v), $(u, v) \in \mathbb{R}^2$, with K a kernel on \mathbb{R} . How can \hat{f}_X be written in that case?