Statistique pour données fonctionnelles. Chapitre 4. Statistique descriptive et exploratoire pour données fonctionnelles

Gaëlle Chagny CNRS, Labo. de Maths. R. Salem, Univ. Rouen,

Université Paris Dauphine – Executive Master Statistique et Big data, 2020

Plan

Statistique descriptive

Moyenne et variance empirique Covariance et corrélation

ACP fonctionnelle

Rappel - ACP multivariée Théorie de l'ACP fonctionnelle Mise en pratique de l'ACP fonctionnelle Représentations graphiques et exemples

Plan

Statistique descriptive

Moyenne et variance empirique Covariance et corrélation

ACP fonctionnelle

Rappel - ACP multivariée Théorie de l'ACP fonctionnelle Mise en pratique de l'ACP fonctionnelle Représentations graphiques et exemples

Statistique descriptive pour données fonctionnelles - Objectifs

Cadre multivarié.

- Observations : $X_1, \ldots, X_n \subset \mathbb{R}^d$, $X_i = {}^t(X_{i,1}, \ldots, X_{i,d})$.
- Mesures résumées
 - Moyennes empiriques :

$$X_j = n^{-1} \sum_{i=1}^n X_{i,j}, \ j = 1, ..., d.$$

• Matrice de variance-covariance :

$$\Sigma_n = \left(n^{-1} \sum_{i=1}^n (X_{i,j} - X_{,j})(X_{i,j'} - X_{,j'})\right)_{j,j'}.$$

Cadre fonctionnel.

- Observations: $X_1, \ldots, X_n \subset L^2(T), X_i = \{X_i(t), t \in T\}.$
- Mesures résumées : comment étendre les notions précédentes ?

Plan

Statistique descriptive Moyenne et variance empirique

Covariance et corrélation

ACP fonctionnelle

Rappel - ACP multivariée Théorie de l'ACP fonctionnelle Mise en pratique de l'ACP fonctionnelle Représentations graphiques et exemples

Moyenne et variance (1)

Observations lissées. $X_1, \ldots, X_n \subset L^2(T), X_i = \{X_i(t), t \in T\}$

Définition

fonction moyenne empirique :

$$egin{array}{lll} ar{X}_n : & \mathcal{T} & \longrightarrow & \mathbb{R}, \\ & t & \longmapsto & ar{X}_n(t) = rac{1}{n} \sum_{i=1}^n X_i(t). \end{array}$$

• fonction variance empirique :

$$Var_n: T \longrightarrow \mathbb{R},$$

$$t \longmapsto Var_n(t) = \frac{1}{n} \sum_{i=1}^n (X_i(t) - \bar{X}_n(t))^2.$$

On définit également l'écart-type comme étant la racine carrée de cette fonction variance.

Moyenne et variance (2) - Code R

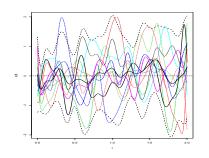
Fonctions du package fda

- 1. mean.fd
 - Argument : objet fonctionnel (éventuellement multidimensionnel) comportant plusieurs courbes de la classe fd
 - Sortie : objet de la classe fd contenant la (les) fonction(s) moyenne de l'objet (ou des objets) en paramètres.
 - appliquée à un objet fonctionnel comportant plusieurs courbes (éventuellement multidimensionnel) de la classe fd, elle renvoie un objet de la classe fd.
- 2. sd.fd ou std.fd : de manière similaire à la fonction précédente, retourne les fonctions écart-type des données en paramètres.

Moyenne et variance (3) - Exemple

Exemple.
$$X_i = \sum_{j=1}^{N} \xi_{i,j} \psi_j$$
, $i = 1, ..., 10$, avec

- $\xi_{i,i}$ i.i.d. $\mathcal{N}(0,1)$
- $(\psi_i)_i$ base de splines cubiques à 21 noeuds équirépartis sur [0;2].



$$\begin{array}{ll}
 & t \mapsto X_i(t) \\
 & t \mapsto \bar{X}_n(t), \\
 & \dots & t \mapsto \bar{X}_n(t) \pm 2\sqrt{\mathsf{Var}_n(t)}
\end{array}$$

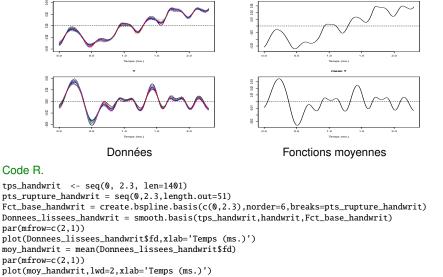
```
Code R.
```

```
extr=c(0.2)
pts_rupture = seq(0,2,length.out=21)
ordre = 4
nb_fctBase =length(pts_rupture)+ordre-2
fct_base = create.bspline.basis(extr,
     norder=ordre .breaks=pts_rupture)
coeff_ech = matrix(rnorm(10*nb_fctBase),
                  nbre_fctBase, 10)
objetfd2 = fd(coeff_ech,fct_base)
sfd2 = std.fd(objetfd2)
mfd2 = mean(objetfd2)
plot(objetfd2.xlab="t".vlab="x(t)")
lines(mfd2, lwd=3)
lines(mfd2+2*sfd2,lwd=2,lty=2)
lines(mfd2-2*sfd2.lwd=2.ltv=2)
```

mean X

Moyenne et variance (4) - Exemple

Exemple. Données Handwrit



Plan

Statistique descriptive

Moyenne et variance empirique

Covariance et corrélation

ACP fonctionnelle

Rappel - ACP multivariée
Théorie de l'ACP fonctionnelle
Mise en pratique de l'ACP fonctionnelle
Représentations graphiques et exemple:

Covariance et corrélation (1)

Observations lissées. $X_1, \ldots, X_n \subset L^2(T), X_i = \{X_i(t), t \in T\}$

Définition

fonction de covariance empirique :

$$C_n: T^2 \longrightarrow \mathbb{R},$$

 $(t_1, t_2) \longmapsto C_n(t_1, t_2) = \frac{1}{n} \sum_{i=1}^n (X_i(t_1) - \bar{X}_n(t_1)) (X_i(t_2) - \bar{X}_n(t_2)).$

fonction de corrélation :

$$Corr_n: T^2 \longrightarrow \mathbb{R},$$

$$(t_1, t_2) \longmapsto Corr_n(t_1, t_2) = \frac{C_n(t_1, t_2)}{\sqrt{Var_n(t_1)Var_n(t_2)}}.$$

opérateur de covariance empirique ((X₁,...,X_n) supposé centré)

$$\begin{array}{cccc} \Gamma_n \,:\, L^2(T) &\longrightarrow & L^2(T) \\ f &\longmapsto & \frac{1}{n} \sum_{i=1}^n \langle f, X_i \rangle X_i. \end{array}$$

Covariance et corrélation (2)

Observations lissées. $(X_1, Y_1), ..., (X_n, Y_n) \subset L^2(T), (X_i, Y_i) = \{(X_i(t), Y_i(t)) | t \in T\}$

Définition

fonction de covariance croisée empirique :

$$\begin{array}{cccc} Cov_{n,X,Y} : T^2 & \longrightarrow & \mathbb{R}, \\ (t_1, t_2) & \longmapsto & Cov_{n,X,Y}(t_1, t_2) = \frac{1}{n} \sum_{i=1}^n \left(X_i(t_1) - \bar{X}_n(t_1) \right) \left(Y_i(t_2) - \bar{Y}_n(t_2) \right). \end{array}$$

fonction de corrélation croisée :

$$\begin{array}{cccc} \textit{Corr}_{\textit{n},\textit{X},\textit{Y}} : \textit{T}^2 & \longrightarrow & \mathbb{R}, \\ & (t_1,t_2) & \longmapsto & \textit{Corr}_{\textit{n},\textit{X},\textit{Y}}(t_1,t_2) = \frac{\textit{Cov}_{\textit{n},\textit{X},\textit{Y}}(t_1,t_2)}{\sqrt{\textit{Var}_{\textit{X}}(t_1)\textit{Var}_{\textit{Y}}(t_2)}}. \end{array}$$

Covariance et corrélation (3) - Code R.

Fonctions du package fda

- 1. var.fd: retourne un ou plusieurs objets de classe bifd, objets fonctionnels à deux variables (2 indices de temps par exemple).
 - cas 1 : appliquée à $t \mapsto X_i(t)$, i = 1, ..., n, renvoie $(t_1, t_2) \mapsto C_n(t_1, t_2)$ sous forme d'un objet fonctionnel.
 - **cas 2**: appliquée à $t \mapsto (X_i(t), Y_i(t)), i = 1, \dots, n$, renvoie $(t_1, t_2) \mapsto C_{n,X}(t_1, t_2), (t_1, t_2) \mapsto Cov_{n,X,Y}(t_1, t_2)$ et $(t_1, t_2) \mapsto C_{n,Y}(t_1, t_2)$.
- cor.fd: calcul de la corrélation empirique entre un ou deux objets fonctionnels, sous forme d'une matrice.
 - cas 1 : appliquée à une grille $\{t_j, j=1,\ldots,d\}$ (vecteur), et $t\mapsto X_i(t), i=1,\ldots,n$, renvoie la matrice $C=(\operatorname{Corr}_{n,X}(t_i,t_k))_{1\leq i,k\leq d}$.
 - cas 2 : appliquée à une grille $\{\dot{t}_i,\dot{j}=1,\ldots,d\}$ (vecteur), $t\mapsto X_i(t),\,i=1,\ldots,n$, une seconde grille $\{t'_k,\,k=1,\ldots,d'\}$ et $t\mapsto Y_i(t),\,i=1,\ldots,n$, renvoie la matrice $C=(\operatorname{Corr}_{n,X,Y}(t_i,t'_k))_{1\leq j\leq d,1\leq k\leq d'}.$

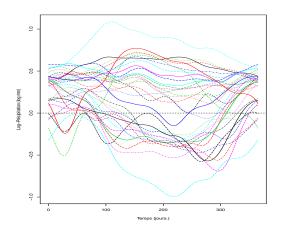
Covariance et corrélation (4) - Code R.

Représentation de courbes en 3D :

- eval.bifd du package fda :
 - Arguments
 - une première grille {t_i, j = 1,...,d} (vecteur),
 - une seconde grille $\{t'_{k}, k = 1, ..., d'\}$,
 - un (ou plusieurs) objet(s) fonctionnel(s) de la classe bifd.
 - Sortie : un tableau contenant les évaluations de ces objets aux points (t_j, t'_k) .
- 2. Outils de tracé d'une surface $(t_1, t_2) \mapsto z(t_1, t_2)$, à partir d'une grille de discrétisation pour t_1 , une pour t_2 , et la matrice d'évaluation de z en (t_1, t_2) .
 - persp : tracé 3D de la surface
 - contour : tracé plan des lignes de niveau.
 - filled.contour : tracé plan des lignes de niveau colorées (la couleur dépendant du niveau).
 - levelplot du package lattice : tracé plan des lignes de niveau et couleurs entre elles.

Covariance et corrélation (5) - Exemple

Exemple 1. Données CanadianWeather, log-précipitations.

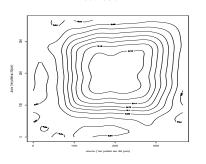


Covariance et corrélation (6) - Exemple

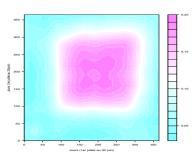
Exemple 1. Données CanadianWeather, log-précipitations.

contour

filled.contour



logprec_var <- var.fd(Donnees_lissees_Logprecip)</pre>



Code R.

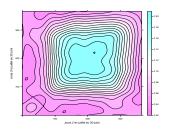
 $jours_5 < -seq(0.365.5)$

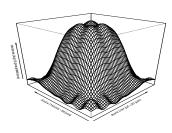
Covariance et corrélation (7) - Exemple

Exemple 1. Données CanadianWeather, log-précipitations.

levelplot

persp

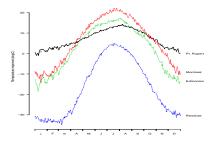




Code R.

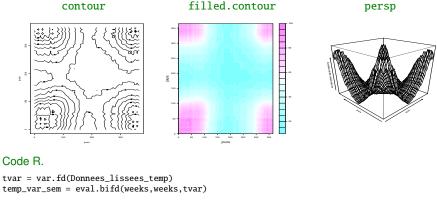
Covariance et corrélation (8) - Exemple

Exemple 2. Données CanadianWeather, températures



Covariance et corrélation (9) - Exemple

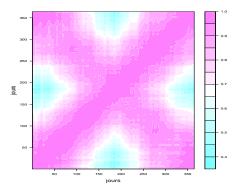
Exemple 2. Données CanadianWeather, températures



```
contour(weeks,weeks,temp_var_sem,xlab="jours", ylab="jours")
filled.contour(weeks,weeks,temp_var_sem,
                  cex.lab=1.5.cex.axis=1.5.xlab="jours". vlab="jours")
persp(weeks.weeks.temp_var_sem.xlab="jours", ylab="jours",
                  zlab="Covariance des températures", theta=-45, phi=25, r=3)
```

Covariance et corrélation (10) - Exemple

Exemple 2. Données CanadianWeather, températures



Code R.

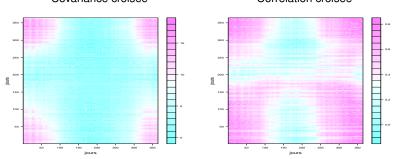
```
jours = 1:365 - 0.5
tcor = cor.fd(jours,Donnees_lissees_temp)
filled.contour(jours,jours,tcor,cex.lab=1.5,cex.axis=1.5,xlab="jours", ylab="jours")
```

Covariance et corrélation (11) - Exemple

Exemple 3. Données CanadianWeather, températures et précipitations

Covariance croisée

Corrélation croisée



Code R.

Plan

Statistique descriptive

Moyenne et variance empirique Covariance et corrélation

ACP fonctionnelle

Rappel - ACP multivariée Théorie de l'ACP fonctionnelle Mise en pratique de l'ACP fonctionnelle Représentations graphiques et exemples

Introduction

- ACP : Analyse en Composantes Principales.
- Objectifs: outil de représentation des données et réduction de la dimension produire une synthèse visuelle / la meilleure représentation possible de données multivariées.
- Type de méthode
 - méthode factorielle (exploiter les aspects géométriques)
 - statistique exploratoire
- ACP fonctionnelle : extension au cadre fonctionnel de l'ACP multivariée.

Plan

Statistique descriptive

Moyenne et variance empirique Covariance et corrélation

ACP fonctionnelle

Rappel - ACP multivariée

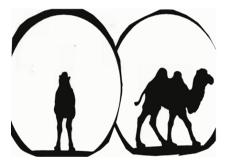
Théorie de l'ACP fonctionnelle Mise en pratique de l'ACP fonctionnelle Représentations graphiques et exemples

Rappels ACP multivariée (1)

De quelle image 3D celle-ci est-elle la représentation simplifiée?

Rappels ACP multivariée (2)

Toutes les représentations simplifiées ne se valent pas!



Principe de l'ACP: réduire la dimension d'un nuage de points pour en obtenir une représentation plus simple tout en conservant le plus possible de variabilité.

Rappels ACP multivariée (3) - Point de vue théorique

- Point de départ. $X = (X_1, ..., X_d) \in \mathbb{R}^d$, $d \ge 3$ vecteur aléatoire.
- **Problématique.** recherche des sous-espaces vectoriels de \mathbb{R}^d qui résument le mieux l'information, pour représenter X dans un espace de dimension < d.
- Méthode.
 - 1. Diagonalisation en base orthonormée de la matrice de covariance Σ de X.
 - 2. Choix des sous-espaces engendrés par les vecteurs propres de Σ .

Rappels ACP multivariée (4) - Point de vue pratique

- Point de départ.
 - Observations $X_i = {}^t(X_{i,1}, \dots, X_{i,d}) \in \mathbb{R}^d$, pour $i \in \{1, \dots, n\}$

$$X_{c} = \left(\begin{array}{ccccc} X_{1,1} - X_{.1} & & \cdots & & X_{1,d} - X_{.d} \\ X_{2,1} - X_{.1} & X_{2,2} - X_{.2} & & \cdots & & X_{2,d} - X_{.d} \\ & & \ddots & & & & \\ \vdots & & & \ddots & & \vdots \\ X_{n,1} - X_{.1} & & \cdots & & & X_{n,d} - X_{.d} \end{array} \right).$$

Matrice de covariance empirique

$$\Sigma = \left(\frac{1}{n} \sum_{i=1}^{n} (X_{i,j} - X_{j})(X_{i,j'} - X_{j'})\right)_{1 \le i,i' \le d} = \frac{{}^{t} X_{c} X_{c}}{n}$$

Inertie du nuage de points

$$I = \frac{1}{n} \sum_{i=1}^{n} \sum_{j=1}^{n} (X_{i,j} - X_j)^2 = Tr(\Sigma)$$

Décomposition de l'inertie totale. pour tout sous-espace S de \mathbb{R}^d ,

$$I = \frac{1}{n} \sum_{i=1}^{n} \|\Pi_{S} X_{i} - X_{i}\|^{2} + \frac{1}{n} \sum_{i=1}^{n} \|\Pi_{S} X_{i}\|^{2} = I_{S} + I_{S^{\perp}}.$$

Rappels ACP multivariée (4) - Point de vue pratique

- Principe de l'ACP. Recherche séquentielle (par récurrence) des axes de projections minimisant la déformation du nuage de départ.
 - Recherche de Δ₁ tel que I_Δ[⊥] est maximale.
 Solution : Δ₁ dirigé par a₁, vecteur propre normé associé à la plus grande valeur propre λ₁ de Σ.
 - Recherche de Δ₂, orthogonal à Δ₁ et tel que I_{Δ¹/2} est maximale.
 Solution : Δ₂ dirigé par a₂, vecteur propre normé associé à la seconde plus grande valeur propre λ₂ de Σ.
 ...
- Construction de $S_k = \Delta_1 + \cdots + \Delta_k = \text{Vect}(a_1, \dots, a_k)$, avec

• **Représentation** des individus X_i dans la nouvelle base $\{a_1, \ldots, a_k\}$.

Plan

Statistique descriptive

Moyenne et variance empirique Covariance et corrélation

ACP fonctionnelle

Rappel - ACP multivariée

Théorie de l'ACP fonctionnelle

Mise en pratique de l'ACP fonctionnelle Représentations graphiques et exemple:

ACP fonctionnelle - Théorie (1)

	ACP multivariée	ACP fonctionnelle
Données	$X \in \mathbb{R}^d$ $X = {}^t(X_1, \ldots, X_d)$	$X \in L^{2}(T)$ $X = \{X(t), t \in T\}$
Moyenne	vecteur de moyenne $\mathbb{E}[X] = {}^t(\mathbb{E}[X_1], \dots, \mathbb{E}[X_d])$	courbe de la moyenne $\mathbb{E}[X] = \{\mathbb{E}[X(t)], t \in T\}$
Covariance	$\begin{array}{c} \text{matrice} \\ \Sigma_X = \text{Cov}(X,X) \end{array}$	fonction de covariance C_X ou opérateur Γ_X $C_X(s,t) = \text{Cov}(X(s),X(t))$

ACP fonctionnelle - Théorie (2)

- Point de départ. $X = \{X(t), t \in T\} \in L^2(T)$
- **Objectifs.** construction d'une base hilbertienne $(\psi_j)_{j\in\mathbb{N}\setminus\{0\}}$ de $L^2(T)$ telle que l'espace $S_k = \text{Vect}\{\psi_1,\ldots,\psi_k\}$ minimise la distance L^2 entre X et sa projection orthogonale $\Pi_{S_k}X$.
- Construction. Recherche séquentielle (par récurrence)
 - 1. Recherche de $\psi_1 \in L^2(T)$, de norme $||\psi_1||^2 = \int_T \psi_1^2(t) dt = 1$, telle que

$$\psi_1 \in \arg\min_{f \in L^2(T)} \mathbb{E}[||X - \langle X, f \rangle f||].$$

2. Recherche de $\psi_2 \in L^2(T)$, de norme $||\psi_2||^2 = 1$ et $\langle \psi_2, \psi_1 \rangle = 0$, telle que

$$\psi_2 \in \arg\min_{f \in L^2(T)} \mathbb{E}[||X - \langle X, \psi_1 \rangle \psi_1 - \langle X, f \rangle f||].$$

3. ...

k+1. Si ψ_1, \ldots, ψ_k déjà construits, recherche de $\psi_{k+1} \in L^2(T)$, de norme $||\psi_{k+1}||^2 = 1$ et $\langle \psi_{k+1}, \psi_i \rangle = 0$ pour tout $j \leq k$, telle que

$$\psi_{k+1} \in \arg\min_{f \in L^2(T)} \mathbb{E}[||X - \Pi_{S_k} X - \langle X, f \rangle f||].$$

ACP fonctionnelle - Théorie (3)

Proposition

La famille $(\psi_k)_k$ est constituée de fonctions propres de l'opérateur de covariance Γ_X associées aux valeurs propres $(\lambda_k)_{k\geq 1}$ rangées par ordre décroissant :

$$\Gamma_X \psi_j = \lambda_j \psi_j$$
 ou encore $\int_{\mathbb{T}} C_X(s,\cdot) \psi_j(s) ds = \lambda_j \psi_j(\cdot)$.

Ainsi, la base de l'ACP fonctionnelle est, au signe près, la base de Karhunen-Loève de X.

ACP fonctionnelle - Théorie (4)

	ACP multivariée	ACP fonctionnelle		
Données	$X \in \mathbb{R}^d$ $X = {}^t(X_1, \dots, X_d)$	$X \in L^{2}(T)$ $X = \{X(t), t \in T\}$		
Base de l'ACP	vecteurs propres $(a_j)_{j=1,\dots,d}$ de la matrice de covariance	fonctions propres $(\psi_j)_{j\geq 1}$ de l'opérateur de covariance		
Représentation ACP	$X = \mathbb{E}[X] + \sum_{j=1}^{d} \xi_j a_j$	$X(t) = \mathbb{E}[X](t) + \sum_{j=1}^d \xi_j \psi_j(t)$		

Plan

Statistique descriptive

Moyenne et variance empirique Covariance et corrélation

ACP fonctionnelle

Rappel - ACP multivariée
Théorie de l'ACP fonctionnelle

Mise en pratique de l'ACP fonctionnelle

Représentations graphiques et exemples

ACP fonctionnelle - Point de vue pratique

- Point de départ.
 - Observations. $X_i = \{X_i(t), t \in T\} \in L^2(T)$, pour $i \in \{1, ..., n\}$
 - Opérateur de covariance empirique

$$\Gamma_n f(s) = \frac{1}{n} \sum_{i=1}^n \langle X_i, f \rangle X_i = \int_T C_n(s, t) f(t) dt, \quad C_n(s, t) = \frac{1}{n} \sum_{i=1}^n X_i(s) X_i(t).$$

- **Propriétés.** Γ_n est autoadjoint compact donc diagonalisable, de valeurs propres $(\hat{\lambda}_i)_{i\geq 1}$ et de vecteurs propres $(\widehat{\psi}_i)_{i\geq 1}$
- Estimation de la base de Karhunen-Loève.
 - λ̂_j estime λ_j.
 ψ̂_i estime ψ_i.

Plan

Statistique descriptive

Moyenne et variance empirique Covariance et corrélation

ACP fonctionnelle

Rappel - ACP multivariée Théorie de l'ACP fonctionnelle Mise en pratique de l'ACP fonctionnelle

Représentations graphiques et exemples

ACP fonctionnelle - Code R.

Fonction pca.fd du package fda

1. Arguments principaux.

- fdobj : objet de la classe fd (données fonctionnelles après lissage), éventuellement multivarié.
- nharm: nombre de fonctions propres à calculer (aussi appelées harmoniques),
- centerfns : booléen, si la valeur est TRUE, centrage des données avant le calcul de l'ACP.

2. **Sortie.** retourne un objet de la classe pca.fd, dont les entrées principales sont

- harmonics: objet fonctionnel (classe fd) contenant les fonctions propres $(\widehat{\psi_i})_{i\geq 1}$
- values : ensemble complet des valeurs propres de l'opérateur de covariance empirique $(\hat{\lambda}_i)_{i\geq 1}$
- scores: matrice des scores ie. des coordonnées des individus (courbes) dans la nouvelle base, ie. selon chacune des fonctions propres,
- varprop : vecteur donnant la proportion de variance expliquée par chaque fonction propre,
- meanfd: objet fonctionnel (classe fd) contenant la fonction moyenne.

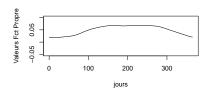
ACP fonctionnelle - Représentation graphique

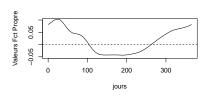
- 1. Tracé des premières fonctions propres $(\widehat{\psi}_j)_{j\geq 1}$ (ou composantes principales), de manière à obtenir une proportion de variance expliquée supérieure ou égale à 90%.
- Représentation, dans un plan, des coordonnées des courbes de l'échantillon de départ selon la première et la seconde composantes principales (ou la seconde et la troisième, ...).
- Représentation des composantes principales comme perturbation de la fonction moyenne.
 - $\longrightarrow plot.pca.fd.$

ACP fonctionnelle - Exemple (1)

Exemple. Données CanadianWeather, log-précipitations.

- $\hat{\psi}_1$: 87.4% de la variabilité expliquée ($\hat{\lambda}_1 = 39.5$),
- $\hat{\psi}_2$: 8.6% de la variabilité expliquée ($\hat{\lambda}_2 = 3.9$).



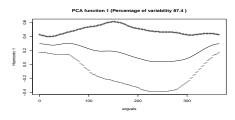


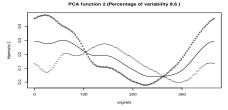
Code R.

```
Logprecip_ACP=pca.fd(Donnees_lissees_Logprecip,
           nharm=2)
print(Logprecip_ACP$values)
print(Logprecip ACP$varprop)
par(mfrow=c(2,1))
plot(Logprecip ACP$harmonics[1].xlab='jours'.
           ylab="Valeurs Fct Propre",
           ylim=c(-0.05,0.1),main="PC1")
plot(Logprecip_ACP$harmonics[2],xlab='jours',
           ylab="Valeurs Fct Propre",
           vlim=c(-0.05.0.1).main="PC2")
```

ACP fonctionnelle - Exemple (2)

Exemple. Données CanadianWeather, log-précipitations.



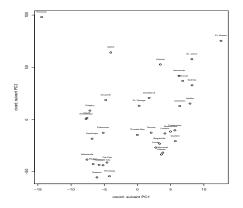


Code R.

par(mfrow=c(2,1))
plot.pca.fd(Logprecip_ACP)

ACP fonctionnelle - Exemple (3)

Exemple. Données CanadianWeather, log-précipitations.

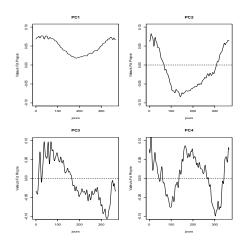


Code R.

ACP fonctionnelle - Exemple (4)

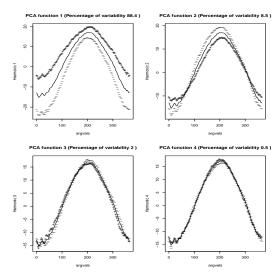
Exemple. Données CanadianWeather, températures.

Fonction propre	$\widehat{\psi}_1$	$\widehat{\psi}_2$	$\widehat{\psi}_3$	$\widehat{\psi}_4$	
Variabilité expliquée	88.4%	8.5%	2%	0.5%	



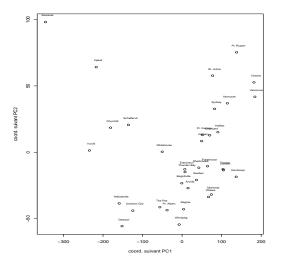
ACP fonctionnelle - Exemple (5)

Exemple. Données CanadianWeather, températures.



ACP fonctionnelle - Exemple (6)

Exemple. Données CanadianWeather, températures.



ACP fonctionnelle - Pour aller plus loin

- ACP fonctionnelle pour données fonctionnelles multivariées
- Transformation de la base de l'ACP par rotation (stratégie VARIMAX).