Université Paris Descartes UFR de Mathématiques et Informatique 45 rue des Saints-Pères 75006 Paris 2011-2012 LICENCE L3

Algèbre Linéaire et Bilinéaire

Feuille d'exercices n°1 : Révisions

Dans toute la feuille, k désigne un corps (commutatif) quelconque, par exemple $k = \mathbb{R}$ ou \mathbb{C} , et n désigne un entier naturel non nul.

Exercice 1. (Indice d'un endomorphisme) Soit E un k-espace vectoriel de dimension finie n et $u \in \mathcal{L}(E)$.

- (1) Montrer que la suite $(\text{Ker}(u^i))_{i\in\mathbb{N}}$ est croissante et que la suite $(\text{Im}(u^i))_{i\in\mathbb{N}}$ est décroissante.
- (2) Montrer qu'il existe un indice $j \in \mathbb{N}$ tel que $\operatorname{Ker}(u^j) = \operatorname{Ker}(u^{j+1})$. On peut donc définir r le plus petit entier tel que $\operatorname{Ker}(u^r) = \operatorname{Ker}(u^{r+1})$. Cet entier s'appelle l'indice de l'endomorphisme u.
- (3) Justifier que pour tout $0 \le j < r$, $\operatorname{Ker}(u^j) \subsetneq \operatorname{Ker}(u^{j+1})$, et que pour tout $j \ge r$, $\operatorname{Ker}(u^j) = \operatorname{Ker}(u^{j+1})$.
- (4) Montrer que $\operatorname{Im}(u^r) = \operatorname{Im}(u^{r+1})$ et que l'on a aussi $\operatorname{Im}(u^r) \oplus \operatorname{Ker}(u^r) = E$.
- (5) Montrer que la suite des sauts de dimensions (dim $\operatorname{Ker}(u^{i+1}) \operatorname{dim} \operatorname{Ker}(u^i)_{i \in \mathbb{N}}$ est décroissante. $\operatorname{Indication}$: on pourra justifier que dim $\operatorname{Ker}(u^{i+1}) \operatorname{dim} \operatorname{Ker}(u^i) = \operatorname{dim}(\operatorname{Ker}(u) \cap \operatorname{Im}(u^i))$.

Exercice 2. Soit $E \neq \{0\}$ un k-espace vectoriel, et $u \in \mathcal{L}(E)$.

- (1) On suppose que u laisse stable toutes les droites vectorielles de E. Montrer que u est une homothétie.
- (2) On suppose E de dimension finie n. On suppose aussi que u laisse stable tous les sous espaces vectoriels de dimension p de E (pour $p \in \{1, ..., \dim(E)\}$ fixé). Montrer que u est une homothétie.
- (3) Application : On suppose que pour tout $v \in \mathcal{L}(E)$, $u \circ v = v \circ v$. Montrer que u est une homothétie.

Exercice 3. Soit E un k-espace vectoriel de dimension finie.

- (1) Soit φ une forme linéaire non nulle sur E. Montrer que le noyau de φ est un hyperplan de E.
- (2) Soit H un hyperplan de E. Construire une forme linéaire sur E dont le noyau est H.
- Exercice 4. (1) Soit A une matrice carrée de taille n, triangulaire supérieure, avec des 0 sur la diagonale. Montrer que A est nilpotente (sans utiliser le théorème de Cayley-Hamilton). Indication: considérer l'endomorphisme canoniquement associé à A.
 - (2) Soit $A = \begin{pmatrix} 3 & 1 & 0 \\ 0 & 3 & 2 \\ 0 & 0 & 3 \end{pmatrix}$. Calculer A^n pour tout $n \in \mathbb{N}$.

Exercice 5. Soient $A, B \in M_n(\mathbb{R})$. On suppose que A et B sont semblables dans $M_n(\mathbb{C})$. Montrer qu'elles le sont aussi dans $M_n(\mathbb{R})$.

Exercice 6. Soient $\lambda_1, \ldots, \lambda_n \in \mathbb{C}$. Calculer le déterminant, dit de Vandermonde,

$$V(\lambda_1,\ldots,\lambda_n) = \det((\lambda_i^{j-1})_{1 \leq i,j \leq n}).$$